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ABSTRACT 

The spheroidal theory developed by Vinti for determining the orbit of an 
artificial satellite of an oblate planet is presented in algorithmic form, in 
which empirically derived initial conditions a r e  used to obtain the coordinate 
and velocity components of an unretarded satellite a t  any time. A differential 
orbit improvement method utilizing observational data is described. This 
method produces a mean set of orbital elements by an iterated least-squares 
fitting of the equations of condition. The results of preliminary applications 
of the orbit generator and differential correction to two artificial satellites of 
the earth, through use of a high- speed digital electronic computer, a r e  shown 
in tabular and graphical form. 
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ORBITAL PREDICTION AND DIFFERENTIAL CORRECTION 
USING VINTI'S SPHEROIDAL THEORY FOR ARTIFICIAL SATELLITES 

by
Harvey Walden 

Goddard Space Flight Center 

INTRODUCTION 

The spheroidal method for satellite orbits provides a procedure for calculating the orbit of 
any satellite of an oblate planet, when all forces except those of the primary's gravitational field 
a r e  neglected. Determining the effect of the oblateness of a planet on the orbit of a satellite suf­
ficiently near the planet so that the forces of other bodies may be neglected is one of the central 
problems of satellite astronomy. 

Vinti, in a series of research papers (listed in the bibliography at the conclusion of this report), 
has found a gravitational potential for the exterior of an axially symmetric oblate planet which is 
able to produce an "intermediary reference orbit" accounting for more than 99.5 percent of the 
deviation of the earth's potential from spherical symmetry. The Vinti potential is a very accurate 
approximation for the earth's gravitational potential, which both satisfies Laplace's equation and 
leads to separability of the Hamilton- Jacobi equation in oblate spheroidal coordinates, the most 
appropriate system for an oblate planet. Use  of this form for the potential reduces the problem of 
satellite motion to the analytic solution of quartic polynomials and avoids the use of perturbation 
theory entirely in deriving an accurate intermediary orbit. The Vinti potential is actually much 
closer to the empirically accepted one for the earth than any previously used as the starting point 
of a calculation. In the case of the earth, the resulting intermediary orbit reproduces the even 
zonal harmonics exactly through the second and approximately through the fourth. The secular 
solution can be obtained to arbitrarily high order in the second harmonic oblateness parameter, 
and, by means of rapidly converging infinite series,  the periodic solution can easily be obtained , 

through second order. The solution holds for all angles of inclination (in the case of equatorial or  
near-equatorial orbits, certain simplifications can be made in the equations) and contains no critical 
inclination or long-periodic terms. For such a reference orbit, e r r o r  can never accumulate be­
cause of the exactness of the secular terms. 

This method of solution for unretarded satellite orbits has been adapted for computational 
purposes on a high-speed digital electronic computer primarily by means of the FORTRAN pro­
gramming language. This paper provides a computational procedure for determining and correct­
ing an orbit in algorithmic form, adopting algebraic symbols consistent with those in Vinti's 
papers. A summary of preliminary results utilizing observational data from artificial satellites 
is included. 

INPUT PARAMETERS 

The fundamental physical units employed are those of the canonical Vanguard system. In this 
system, the fundamental unit of length is the earth's equatorial radius (taken to be 6378.388 kilo­
meters), andthe fundamentalunit of mass  is the terrestr ia l  mass  (taken to be 5.983X1024 kilograms). 
The fundamental unit of time is adjusted so that the Newtonian gravitational constant, G, is set 
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equal to unity; this process yields a value for the Vanguard unit of time of 806.832 seconds. To 
obtain a physical significance for this time, consider a satellite "orbiting" the earth at its sur­
face. This time unit is then seen to be the time required for such a satellite to traverse one 
radian. 

The inertial coordinate system takes the earth's polar axis as the Z-axis (which is also 
the planetary axis of symmetry and the axis of rotation). The X-Y plane is the equatorial plane, 
with the X-axispointing toward the vernal equinox (the first point of Aries), the Y-axis orthog­
onally to the east to form a right-handed system, and the earth's center of mass at the origin. 

The following constants are required in the computations: 

p =  GM, where G is the Newtonian gravitational constant and M is the earth's mass. 
From the preceding remarks, it is seen that p = 1 in the Vanguard system. 

c I re 6, 
where re is the equatorial radius of the earth (unity in the Vanguard sys­
tem) and J2 is the coefficient of the second zonal harmonic in the infinite series 
expansion of the earth's potential. The value of J2 is approximately 1.0823x10-3. 

ti ,  the initial time 

t,, the final time 

At, 	 the time increment used in generating position and velocity components for equal 
time intervals following t i  and preceding t t  

Xi,Yi,Zi ,  the initial conditions of position 
. . .  . . .  
Xi,  Yi,Zi ,  	the initial conditions of velocity. Note that the set Xi,yi, zi ,xi,yi ,zi of initial 

conditions is also referred to as the set of injection conditions if ti  , the initial 
time, is taken to be the time of injection of the satellite into orbit. 

COORDINATE CONVERSION 
We now compute: 

The square of the magnitude of the position vector: 

The dot product of the position and velocity vectors: 

r i  r i  = Xi Xi + YiYi + Zi Zi .  

The oblate spheroidal coordinates (P ,  7) ,4 ) and their time derivatives: 
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Then pi and vi are found by extracting square roots, with the condition that the sign of qi is 
the same as the sign of z i  . 

In the above, pi f 0 ,  but if qi = 0,  then ii = Zi /pi. 

From the above trigonometric relations, we obtain c $ ~  within the limits 0 sd~~< 2n . 

THE JACOB1 CONSTANTS OF GENERALIZED MOMENTA 

Compute 
1 '  

al = (x! + Y? + Z:)-/J pi (p: t c2 T $ ) - ~  , 

a3 = Xi Yi - Y,Xi , 

FACTORING THE QUARTICS: PRIME CONSTANTS 

Compute 

< = - 2 a l a i  p-2 , 

k, = c2 pi2 , 
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g = k, yi  (3< - 4) - 16 k i  y i  (2 y i  - 1) 

1/2 , 
e = [I - < (1 t g)]  

If (u: - U: ) = 0, then 7, = 0 and 7i2 = k, < (1  - k, xi). 

If (u: - ui ) # 0, then calculate 7, from 

8ul c2 (u;- a i )  

(a; - 2Ul c2)2 

Also, 

MUTUAL CONSTANTS 

9 = . 
If 7, # 0, then compute 

where Pn (x) is  the Legendre polynomial with argument x of degree n, and w..ere Rn(x) = 2 Pn (1h) .  
The infinite series above (and those that follow) is computed by an iterative method, with com­
putation of terms ceasing when the absolute value of the ratio of successive te rms  minus unity 
is less than o r  equal to some preselected tolerance, Le., computation ceases when 

where E might be lo-’. Convergence should be attained by consideration of the first several  
terms, in most cases. To increase computational speed, the first te rm (for n = 2) of the above 
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series may be given explicitly by 

If qo = 0 (corresponding to an orbit in the equatorial plane), compute instead 

where the first term (for n = 2) is given explicitly by 

If T~ # 0, compute 

where P,, and Rn are defined as above, and where the first term (for n = 0) of the above ser ies  
is given explicitly by 

(1 - ez)1 /2  d l  

If vo = 0, compute instead 

A, = (1 - e2)1”2 p-1 2 ­
n=O 

where the first term (for n = 0) is given explicitly by 

Then compute 

where, for T~ f 0, D, is computed as follows: 

i 

m=O 

( n  an even integer) 

(n an odd integer). 
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If T~ = 0, use instead 

( n  an even integer) 

( n  an odd integer). 

Then compute 

B - - t - q 2 + - 15
1 3 

' - 2  16 128 q4 ' 


1
B2 = 1 +-q2 + - 9 
44


4 64 ' 


where 

3
p4 - _  (1 - e2)1/2 p-3 b: e2 . 

- 32 


If (b,/b2 1 < 1, then compute 

A,, = (1 - e2)'/2 p-1 e [bl p-' -t ( 3  b: - bi) p-2 

-9 e2 b b2 p-3 + -3 b: pm4 (6e2 + e.)] , 

8 l 2  32 
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- 1 - p-' e3 (- b,bi pm3+ b; P - ~ )  ,
3 3 '  

--3 (1 - e2)lI2 p-5 b: e4 ,- 256 

A,, = (1 - e2)l/, p-' e [2 t b1 p-1 (3 t?  e2) -pe2 ( i b ;  + c2) ( 4  t3e2 )1  , 

If (b., /b2 ) 2 1 (corresponding to a near-equatorial orbit or an equatorial orbit), then compute 
instead: 

A2, = (1 - e2)1/2 p - '  e [b, p-' t (3 - bi bi2) c4 p-4 (1 - T ; ) ~ ]  , 

AZ3 and A,, as given above. 

% 4 = - 3 2  
1 (1  - e2)1/2 p-5 e4 cz. 

Now compute 

2rvl = (- 2 ~ , ) ' / ~(a + b, + 4 + c2 4 A, B,B,-l)-' . 
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If (bl/b, ) < 1, compute 

277uz = (ai - a:),', 7;' A, B;' (a t b, + A, t c27; A, B, B;1)-1 . 

If (b,/b,) 1, compute instead 

-TU, = a, [l- 2 ~ , a ; ~ c ~ ( l7~)]1'2A,B;'(a t b, + A ,  + c2$ A, B, Bil)- '  

Then compute 

Note that the condition e' 5 e 

THE JACOB1 CONSTANTS OF 
If e # 0,then compute 

From the above, we obtain E, 

From the above, we obtain vi 

If e = 0, then 

and 

If qo # 0, then compute 

e' = a e ( a  t b,)-' . 

must be fulfilled. 

GENERALIZED COORDINATES 

COS Ei = ( 1  - pi a-') e-, 

within the limits 0 5 E, < 2n. 

( 1  - e,z)1'2 sin E, 
s i n v i  = ,

1 - e cos E, 

cos E, - e 
cos v. = 

' 1 - e c o s E i  

within the limits 0 -< vi < 2.rr 

v. = 0 

E, = O  


From the above, we obtain $i within the limits o 5 < 27~.  
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From the above, we obtain xi within the limits 0 5 xi < 27r. 

If q,, = 0, then: = 4, and xi = + i .  

Now compute 

s i n  ”vi f o r  n = 2 ,  3, 4, 

s i n  n+i for n = 2 ,  4 .  

If (b,/b,) c 1, then compute 

,Bl = (- 2 ~ , ) - ” ~[b, Ei + a(Ei - e s i n  Ei) + A, vi 

+ A,, s i n  vi + A12 s i n  2vi1 + cz(a; - a;)-1/2 q: [B, +i 

,B, = - Q,( - 2 ~ , ) - l / ~[A, vi + A,, s i n  vi + A,, s i n  2vi  

+ A,, s i n  3vi + A,, sin 4 v i l  + (ai - To a2 [B2 3, 

1 3 
3 2  

q2(4 + 3q2) s i n  2+i t - q4 s i n  4+i12 56 

If (b, /b, ) 1, then compute instead 
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3 1  

P, = - a, ( - 2a,)-1/2 [A2vi t AZ1 s i n  vi t A,, s i n  2vi 

t A,, s i n  3vi t A,, s i n  4vil t [ l  - 2ala;2 c2 (1  - 7702)1-1/2 [B,$i 

--1 q2(4 t 3q2) s i n  29bi t -3 
q4 s i n  

32  2 56 

If # 0 and if (bl/b, ) < 1, then compute 

+A,, s i n  vi t A3, s i n  2vi t A,, s i n  3vi t AJ4 s i n  4vi] 

If 7o # 0 and if (bl/b, ) 2 1, compute instead 

t B, $ilt c2 a, ( - 2 ~ , ) - ~ / '  [A,vi t A,, s i n  vi t A3, s i n  2vi 

t A33 s i n  3vi t A,, s i n  4vi] . 
If = 0, compute instead 

t A,, s i n  vi t A,, s i n  2vi] t c2u3( - 2al)-1/2 [A V. 

t A31 s i n  vi t A32 s i n  2vi t A33 s i n  3vi t A,, s i n  4vi] , 

Q3where sgn a, 1 -.
I a3 I 

THE ORBIT GENERATOR OF POSITION AND VELOCITY COMPONENTS 

In this section, parameters arise which are time-dependent. Initially, the value for  time 
t is equal to ti ,  but on subsequent iterations t = ti  + n ( A t ) ,  n = 1, 2, 3, . . . . . Here A t  is the 
time increment input parameter used in generating position and velocity components for equal 
time intervals following ti and precedingor coincident with the final time, t f  . 
If vo # 0 and if  (b, /b,) < 1, then compute 

Ms = 2nvl (t t Pl - c2 P,a;' 7,"B, B;') , 
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If T~ # 0 and if (bl /b2) 1, then compute instead 

+, as given above. 

If qo = 0, then compute instead 

M, = (- 2 ~ ~ ) " ~(t +/?,)(a t b, + A1)-' , 

We now solve the following equation for (M, + Eo). 

M, +Eo- e' s i n  (M, +Eo)= M,. 

If we let E = M, + E,, then we can solve this equation (known as Kepler's equation) by use of the 
iterative Newton-Raphson method. 

�,+, = E, - (&, - e' s i n  &, - M,) 

(1 - e' c o s  E,) 

(E, - e' s i n  &, - M,)' ( e ' s i n  En)-	 . . ~ 

2(1 - e' c o s  E,)j 

For the initial value, (E,),=o = M, . Iteration ceases when 

where E is apre-selectedtolerance (e.g., ). Convergence should be attainedwith several iterations. 

Now use the anomaly connections 

cos  v' = ( cos  & - e ) ( l  - e c o s  e)-' , 

From the above, we obtain V' within the limits 0 I v' < 277. The angle V' is then placed within 
the same circle of revolution as the angle E (which is not taken modulo 2n).-
Then compute v

0 
= v' -M, . 
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If qo # 0 and if (b, /b, ) < 1, then compute 

$J0 = (- 2 a,>- 112 (a; - a y / 2  77;' A, B;' vo , 

M, = (a t b,)- '  [-(A, t c2 7; A,B,B;' )vo 

If qo # 0 and if (b,/b,) 2 1, then compute instead 
1/2 

$o = ( - 2 ~ , ) - ~ / ~[1 - 2 a , ~ ; ~cz  (1 - q:)] a, A, B;, vo , 

M, = (a t b,)-' {- (A1 t c2q;  A,B,B;') v,, 

If qo = 0, then compute instead 

$Jo = ( - 2 ~ , ) - ~ / *(1  - 2 ~ ~ 0 . ; ~c2)'" a, A, v0 > 

M, = - (a t b, ) - ,  A, vo . 

Continuing, if qo # 0 and (b, /b,)  c 1, if qo = 0, then compute 

E, = (1 - e' c o s  & ) - I  M, - -1 e' (1 - e' cos M: sin & . 
2 

If qo # 0 and if (bl /b,) 2 1, then compute instead 

E, = (1 - e' cos  & ) - I  M ,  . 

Now use the anomaly connections again 

c o s  v" = [cos (& t E,) - e] [l - e cos  ( E  t E , ) ] - 1  , 

s i n  v" = (1 - (1 - e cos (& t E,)]- '  sin (e + E,) . 

From the above, find the angle V" and place i t  within the same circle of revolution as the 
angle (E + E, ). 

Then compute v 
1 

= V'' - v' 

If qo # 0 and if  (b, /b2)  < 1, then compute 

$J, = ( - 2 ~ , ) - ~ "  ( a ;  - a : ) 1 / 2q i l  B;' (Az v, t A,, sin v' 

t A,, s i n  2v')  t -1 q2 B;' s i n  (29bS + 2$J0) . 
8 
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If qo # 0 and if (b,/b,) 2 1, then compute instead 

1+ A z ,  sin v' +A,, sin 2 v ' )  + - q z  B;' sin (2$'s + 2 $ ~ ~ )
8 . 

If qo = 0, then compute instead 

$, = (- 2 (1 - 2al a ;  cz)  a,  (A, v, + A,, sin v' t A,, sin 2 v' ) . 

Now if (b,/b,) < 1, we continue this procedure one step further to obtain t e rms  of second order, 
as follows. Compute 

M, = - (a + b,)-I v1 + A,, sin v' + A,, sin 2v'  

Let 

E, = [l  - e' c o s  (P + E , ) ]  M, 

E =  ? + E ,  + E ,  

and use the anomaly connections once again. 

C O S  v"' = ( c o s  E - e )  (1 - e cos E)- '  , 

s i n  v"' = (1 - e2) l I2  (1 - e cos  E ) - l  s in  E 

From the above, find the angle v"' and place it within the same circle of revolution as the angle E. 

Then compute " =v"' -V'' . 

+, = (-2a,)-1/2 ( a :  - a : ) 1 / 2  77;' B;' (Az vz +A,, v1 cos v' 

+ 2A,, v1 cos 2 v '  + A,, s in  3v'  +A,, sin 4 v ' )  

1 3+ - q z B ; l  [ $ , c o s ( 2 $ s + 2 $ o ) t - q ~ s i n ( 2 $ s + 2 r l r o ) - - 3 q z s i n ( 4 $ s  + 4 $ J o )  . 
4 8 64 1 

Finally, let '  

V = M s + V o t V 1 + V 2  , 

$ ' = $ s  + $ o + $ ,  +$, . 
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Now if (bl /b2 ) 2 1, we omit computation of M 2 ,  E, ,vq ,and $*. In such case, these terms be­
come of the third order and hence negligible. 

Instead, we let 
E = E + E l ,  

v = M ~ + v ~ + v ~ 
, 

$=lc: + &  + $ I  . 
Continuing, compute 

c o s x =  (1 - 7); s i n 2  $/J)-1/2 cos $b . 

From the above, find the angle x and place it within the same circle of revolution as the 
angle 3 .  

If (bl/b,) < 1, then compute 

p = (1 + e cos v)-1 p . 

If (b l /b2)2  1, then compute instead 

p = a ( l - e c o s E ) .  

Then, if 7)o # 0 and if @, /b2) < 1, compute 

7) = q0 s in  $ , 

iA,,  sin v + A , ,  sin 2 v  + A , ,  sin 3 v  + A,, sin 4 v )  . 

If q0 # 0 and if (bl /b,) 2 1, compute instead 

77 as given above, 

+ A,, sin 2 v + A,, sin 3v t A,, s in  4v) 

14 



If qo = 0, compute instead 

7 = 0 .  

t A,, sin v + A,, sin 2v) - c2 a, (- 2 u , ) - ~ / ~(A, v 

t A,, sin v t A,, sin 2 v  t A,, sin 3 v  t A,, sin 4v), 

where sgn a, = -a3 

la,( 

The oblate spheroidal coordinates must satisfy the following conditions: 

P,O . 

Now the coordinates and velocities may be found: 

h$ = ( p z  + cz) (1 - 7' )  , 

, 6 = a e ( - 2 ~ , ) ~ / ~( p z  + A p + B ) ' l 2  ( p Z + q 2 c Z ) - 1 s i n E, 

This completes the algorithm for predicting orthogonal position and velocity components of the 
satellite based upon a set of initial conditions. 
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COMPUTATION OF DIRECTION COSINES 

Often the set of initial conditions (position and velocity components) provided is only ap­
proximate at best, and thus the orbit that is predicted based on these initial conditions will 
similarly contain inaccuracies. In order to remove these inaccuracies and to account for- the 
effects of forces not considered by the analytical theory (e.g., aerodynamic drag, solar radia­
tion, meteoric bombardment, l etc.), the orbital parameters are corrected by comparison with 
those found by direct observation. The orbit improvement method produces a mean set of 
orbital elements through an iterated least-squares fitting of the differential solution to numer­
ous observational values. 

To perform the differential correction process, the following data must be available in 
addition to the constants listed in the section on input parameters above: 

f = 1 - rp /re, the flattening coefficient of the earth (where rp is the polar radius of the 
earth, and re is the equatorial radius), taken to be approximately 1/298.3 = 3.3523299 X 

w , the rotational rate of the earth in radians per mean solar hour (taken to be 0.26251614) 

( & ) i ,  i = 1, 2, . . . , S ,  the geodetic (or geographic) longitude of the terrestr ia l  tracking 
stations in radians, as measured eastward from Greenwich (a negative sign must be prefixed 
if  measured westward from Greenwich). We assume that there are s tracking stations report­
ing observational data used for comparison purposes. 

( s , ) ~ ,  i = 1, 2, . . . , S ,  the geodetic (or geographic) latitude of the stations in radians, 
measured as positive north of the Equator and as negative south of the Equator (-.rr/2 < OD L +7/2 ) 

(H),  , i = 1, 2, . . . , S ,  the altitude of the stations in feet, measured as positive above sea 
level and as negative below sea level 

( A O ) d ,  d = 1, 2,  . . . , the angle in radians, measured eastward from the vernal equinox (the 
f i rs t  point of Aries) to the Greenwich meridian at midnight Greenwich mean time for each day, d , 
during the period that observations are provided. The apparent sidereal time (the hour angle of 
the first point of Aries) at  midnight Greenwich mean time for each day throughout the year is 
tabulated in "The American Ephemeris and Nautical Almanac. "* 

to,a reference time preceding or coinciding with the time of the f i rs t  observation pro­
vided, which is used as the zero point in determining t , the relative observation time. It may 
be the time of injection if  the tracking data include observations made during the first  several 
orbits of the satellite. The purpose of determining a relative observation time, t , is to elimi­
nate any reference to the calendar. 

We now describe the observation data cards, which are effectively input for the differ­
ential correction scheme. There a r e  several methods of recording satellite tracking data; 
we present here one of the most common methods, referred to as Minitrack observation data. 
(Another method is discussed in Appendix A.) A set of observation data of this type includes the 

' following parameters for each recorded spacecraft observation: 

t' ,the date and time of observation. As given, t'  is a calendar time. We remove any 
dependence on the calendar by determining t = t' - to,where t is the relative observation 
time and to is a reference calendar time. Then t becomes a time interval, measured in Van­
guard units of time from the zero point t o .  As mentioned above, to is chosen so that for all 
observations t 2 0. It is convenient to have the choice of to coincide with that corresponding 
to the initial position and velocity conditions Xi,Y i ,  Z i ,  X i ,Y i ,  ii. When this choice is made, 
to is known as an initial or epoch time. 

*Published annually by Nautical Almanac Office, U. S. Naval Observatory, Washington, D. C. 
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k ,the code number for  the tracking station reporting the observation. Generally, the 
range of k is the set of integers 1, 2, 3, . . . , s 

L,,  the observed direction cosine in the X-direction 

M,, the observed direction cosine in the Y-direction 

w and wy , the weighting factors corresponding to observations L o  and M, , respectively. 
This idormation is optional; if not provided, then it is assumed that wL andw, are each unity. 

The coordinate system employed for the observation data is centered at the tracking 
station on the earth's surface, with the X-Y plane tangent to the surface. It is a right-handed,
orthogonal system with the X-axis extending in an easterly direction along the line of latitude, 
the Y-axis extending in a northerly direction along the line of longitude, and the Z-axis normal 
to the surface and pointing toward the geodetic zenith. 

We first compute the so-called "auxiliary functions" S and C (refer to the "Explanatory 
Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Alma­
nac"*) from the relations 

c = [ c o s 2  oD + (1 - f > 2  sin2 OD]-1'2 , 

s = (1  - f ) 2 C  . 

Here and in the following, we eliminate use of the subscript "i" referring to an individual one 
of the s tracking stations, and assume that the computations given are performed for each re­
spective station. The value of H is then converted from i ts  input units of feet to units of the 
earth's equatorial radius (the conversion factor is 4.77865xlO-*)so as to conform'to the 
canonical Vanguard system of units used throughout (see INPUT PARAMETERS). Then 
the geocentric latitude is given by 

6, = arctan [(s)tan e] . 
Now the geocentric distance of the observation point (i.e., tracking station), in units of the 
earth's equatorial radius, is found: 

j = [ ( s+ H > Z  sin2 oD + (C + HI* c o s 2  OD] v 2 .  

The angle 6 , between the vernal equinox and the observation meridian plane, is computed in 
radian measure by the following expression: 

S = (A O)d + w (AT) t A,. 

Here, is as defined above with the value chosen (designated by the subscript '7d")
corresponding to the midnight immediately preceding observation time. Also, AT is the com­
puted time, in hours, betbeen observation time and midnight preceding observation time. Thus, 
the second term in the expression for 8 accounts for the fact that the Greenwich meridian ro­
tates while the vernal equinox remains fixed in inertial space. 

The inertial geocentric coordinates of the observation point are now converted from a 
spherical to a Cartesian system by means of the following equations: 

*Prepared jointly by the Nautical Almanac Offices of the United Kingdom and the United States of America, London: H M Stationery 
Office, 1361. 
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xT = ;cos ec cos  6 , 

yT = ; C O S  ec s i n  6 , 

zT =;sinec . 

The angle +x, measured in the observation latitude plane between the verna- equinox and the 
tracking station's X-coordinate axis, is given in  radian measure by 

The local coordinates of the satellite (Xy,Yy,Z,) can now be determined from the iner­
tial position vector (X, Y , Z  ) computed by the orbit generator. Here "local" refers to co­
ordinates measured at the tracking station. The orbit generator will produce the position com­
ponents (x,y ,z )  at the observation time. Then the local coordinates are given by the matrix 
relation 

cx.l c1 0 0 cos +x s i n  r 

0 s i n e D  cos OD] [-sin: co;+x 0% 
= l o  - - C o s  eD s i n  eD 2 

Here, the difference of column matrices on the extreme right represents a translation from 
the earth's center to the tracking station position; the center matrix on the right represents 
a rotation in the latitude plane about the polar axis through an angle of GX to bring the inertial 
X-axis into coincidence with the station's X,-axis; the left matrix represents a rotation in the 
longitude plane about the X,-axis through an angle of (7r/2 - O D )  to bring the inertial Z-axis  into 
coincidence with the station's Z,-axis. This matrix equation is equivalent to 

s i n  $x 0 x - XT 

or, explicitly stated, 

x, = (X - X,) c o s  +x + (Y - YT) sin $x , 

Y, = - (x -xT)sin $x sin eD+ (Y - yT) cos +x sin eD+ cz - zT)cos  eD , 

z, = (x - xT) sin +;, C O S  eD- (Y - yT) C O S  $x C O S  OD + (z - z,) sin OD . 

We now find the computed values of the direction cosines L, (in the X-direction) and M, ( in the 
Y-direction) in te rms  of the local coordinates. 

L, = 
( X i  + Yi + z;) 1'2 ' 

M c  = Y, 
(Xi + Y; + z y 2  
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Of course, the computed value of the third direction cosine, N,,(in the Z-direction) is pre­
determined by L, and M, through the relation 

N,  = (1 - Lz - M Z ) 1 / 2  . 

THE STANDARD DEVIATION OF FIT 

The differences between the observed and computed values of the direction cosines can 
now be found 

A L = L , - L , ,  

A M = M , - M , .  

These differences are sometimes referred to as "residualstt, although this te rm is also used 
in a different sense in the method of fitting by least squares. We compute these differences 
for each observation in the set of observation data. The number of observations in the set is 
variable, and may be determined by an input parameter, n. 

The average residual is given by 

-

R =' 

2n 
2 (ALi t A M i ) ,  


i = l  

where the subscript "i" ranges over individual observations. 

The standard deviation of the residuals from their mean value is found from 

The standard deviation of the residuals (from zero) is called the standard deviation of f i t ,  
and is given by 

A s  is customary, the larger multiplicative factor (2n - 6)-' is used to indicate the excess 
of simultaneous equations of condition over the number of independent coefficients (see FITTING 
BY METHOD O F  LEAST SQUARES). 

We may also determine an acceptable range of values for the residuals, bounded by a 
lower limit, r l  ,and an upper limit, r 2  ,based upon the standard deviation. If a residual falls 
outside this range, it may be rejected, with statistical validity, from inclusion in the fitting 
process. For example, we may choose 

-
r l  = R - j w ,  

-
r 2 = R + j u .  
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aqi 

- -  

For normal (Gaussian) distributions, 68.27 percent of the cases are included within one stand­
a r d  deviation on either side of the mean ( j = 1 above), 95.45 percent of the cases are included 
within two standard deviations ( j = 2 above), and 99.73percent of the cases are included within 
three standard deviations ( j = 3 above). For  moderately skewed distributions, the above per­
centages may hold approximately. If certain of the residuals are rejected on this statistical 
basis, the standard deviation of the accepted residuals only may be computed as a ''working" 
standard deviation of fit.  Its value is computed exactly as is uf above, with certain te rms  
omitted in the summation, and should be substantially smaller in magnitude than uf. 

ANALYTICAL PROCEDURE OF DIFFERENTIAL CORRECTION 

The first-order Taylor series expansion of the equations of condition may be written 

3%OL = Lo - Lc = 2 -Oq, , 
aqi 

A M = M o - M c  = 2 2% >-4, 
i =1 

where qi ( i  = 1, 2, . . . , 6) are the mean or Izsak elements given below. 

q, = a, the semi-major axis. 

q2 = e ,  the eccentricity. 

q, = qo = sin I, where I is the inclination of the orbital plane to the Equator. 

q4 = P, , corresponds to the negative of the time of passage through perigee in Keplerian
motion. 

qs = P, , corresponds to the argument of perigee in Keplerian motion. 

qs = P, , corresponds to the right ascension of the ascending node in Keplerian motion. 

We may expand the above partial derivatives by the chain rule as follows: 

From the equations for Lc and Mc in t e rms  of the local coordinates given earlier (refer to COMPU­
TATION O F  DIRECTION COSINES),we find directly 

aLC 
- (% t Y; t G y 1 ' 2 - % (Xi +Y; +z3-3'* , 

ax, 
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Since the coordinates x,?Y,, Z, and the angles $x and OD are independent of orbital param­
eters  (and merely geodesic functions) ,we have the matrix relation 

-

cos Gx s i n  3, 0 

s i n  $x s i n  0, C O S  #, s i n  8, c o s  eD 

s i n  $, C O S  BD - c o s  $, c o s  8, sin 8, 
-

ax ,- aqi by substitutingWe find 	­aqi aqi  

in the relations 

and then determining aE/dqi , a#/&+ , and a+/aqi .  Here E and # are uniformizing variables, 
analogous respectively to the eccentric anomaly and the argument of latitude in elliptic motion. 
The parameter 4 is the third oblate spheroidal coordinate, the geocentric right ascension. 
The procedure for determining the eighteen partial derivatives aE/aqi  , a#/aqi ,and a@/%,  is 
a rather lengthy one which is initiated in the next section. 

21 




Before embarking upon this procedure, the following comments are in order. The ana­
lytical partial derivatives in the differential correction given in this report  correspond to the 
case where (bl /b2 ) < 1 only. This excludes equatorial and near-equatorial orbits. More 
specifically, orbits where the inclination, I, is such that 

0 ( I ( I c  or 180" -Ic 5 I_<180°, 

where IC might be as large as 1'54' for an orbit sufficiently close to the earth, are excluded. 
The analytical partial derivatives for the case in which (bl/b2) 2 1 are, in fact, simpler in 
form, .and they are derived in an analogous manner f rom the equations for this special case 
presented earlier in this report. 

The differential correction process may be carr ied through to t e rms  of second order or 
it may be simplified to omit te rms  of purely second order. This is not quite the same as carry­
ing the process through to t e rms  of first order,  since some second-order effects are included 
even when te rms  of purely second order are dropped. Generally, the speed of computation in 
the differential correction will be increased considerably by neglecting purely second -order 
t e rms  without risking any great loss  in precision of the final differential coefficients for the con­
ditional equations. It should be remembered, however, that even a slight loss  in the precision of 
the differential coefficients may necessitate an additional iteration in the least- squares fitting. An 
option to choose the method desired in the differential correction may be provided by inclusion of 
an input variable assuming either one of two values as appropriate for the choice. The te rms  that 
are to be omitted in the simplified version will be indicated as such in the sections that follow. 

PRIME CONSTANTS II 

The following parameters are utilized extensively throughout the differential correction 
process and must therefore be evaluated beforehand. In many cases, the parameters are those 
that were computed previously by approximation methods, and are here redetermined by more 
accurate expressions: 

p = a (1 - e 2 )  , 

D = (ap - cz)  (ap - c 2 ~ i )t 4a2  c2 qi , 

D' = D + 4 a* c2 (1 - .I,') , 

B = c277: D-' D' , 
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- -  

--  

= az (1- c z q i  [apD' D-' - cz(l - 7$)]-'} '" (1 - qi)1'2 , 

7;' = c2 D (ap D')-', 

DIFFERENTIAL CORRECTION: TIME-INDEPENDENT PARTIAL DERIVATIVES 

Compute the followicg in the order indicated: 

a D = 8 a c 2 7 ) i + 2 p  [ 2 a p - c Z ( 1 + 7 7 i ) ] ,aa 

aD - 8 a' c2 qo - 2 (a p - cz) cZT~ , 

aD - 8 a' cz q, ,
370 
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ae- (a t bl)-' [apD'D-l - C' (1 - .20)1 1/2 'I), 

- (a t b1)- l  [ap D'D-I - C' ( 1 - 7:)1 '/' 

a'+ .'.,' c2 .,' ]-"'[a D '  D-' 
2LapD'D-' - c z ( l  -<)I2 E - ap D'D-' - c2 (1- 7$) 
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-_ ­
aa 2 

ab1ae' - (a t bl)-2 ae -, 
a TO a TO 
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where P, (x) is the Legendre polynomial with argument x of degree n ,  and PA (XI is the deriva­
tive of the Legendre polynomial with respect to the argument. The definition of R is as given 
previously, viz., R,, (XI E X"pn (1/X). All infinite series a r e  computed by an iterative method, 
with computation of terms ceasing when the absolute value of the ratio of successive terms 
minus unity is less than or  equal to some preselected tolerance. 
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I , I  I.. I I., 111..11-. ..... , . . . . .. 

t -3
2 

bi p-j (4 t 3 e2) (2- b, P-l z)}, 

t - 	3 b i p - j  ( 4 t 3 e 2 )  
-l % ) t 2 b i  p-2 e (bi p-' ­

2 a e  4 

9 ab --
2 

b, p-2 (1 t :e2) (b2 t 2b 

3.0 




- 9 p- l  b, b, +-p3 - b; (6 t e') ­
2 


4 
e (1 - 3b: - b l  - 9 p-' b, b i  + L p - ,  b l  (3 t e,) 1,
2 


- 9 p- l  b, b, +-pP-, b; (6 t e') ­3

2 


(where ym has been given above in the section titled MUTUAL CONSTANTS), 

where aDn/aa is computed as follows: 
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is an even integer, then 

is an odd integer, then 

where Dn has been given above in the section titled MUTUAL CONSTANTS, and where a D n / a e  is 
computed as follows: 

If n is an even integer, then 
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If n is an odd integer, then 

where aDn/avo is computed as follows: 

If n is an even integer, then 

If n is an odd integer, then 

+ 2p- '  (4 t 3 e 2 )  
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a Aav, = -7);  1 (a t b, + A ,  t c2 7; A, B, Eli1)-,{ ( a i  - �3;' a ea e  2n 

2
- (a: - 4)  A, B;' 1 . 
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- -  aa e  - - A ~ 3  -1 32 + 1 ( 1  - e z ) l / z  p - 4  e3 bz [ ( 3 b 1 b z p - '  - 4 b 2 3 p - z ) 2 - bl + 2 (2 bi p-' - bl )  
a e  8 a e  b~~ 
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DIFFERENTIAL CORRECTION: TIME-VARYING PARTIAL DERIVATIVES WITH RESPECT TO 
ENERGY-MOMENTA VARIABLES 

We now compute the following partial derivatives of time-dependent parameters with re­
spect to the orbital elements a, e , and q0. We shall later compute the partial derivatives of 
these same parameters with respect to the remaining orbital elements P, ,P,  ,and P3. 
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1 aE 
t 	- M, e' c o t  E -t e'

2 aq0 
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- -  av1 - (1 - e 2 )  sin (& + E,) (sin v N ) - l  I 1  - e cos (E  +El)]- '  (gt 2)- (7+ 3)
aa a '  

c 
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3%' + sin 2v' s]+ (Azl cos v' t 2 A z z  cos 2v') (2.2)+ s i n v ' - a e  ae 

+ (A2l cos v' + 2Az2 cos 2v ' )  t sin 2v' 5­
aq0 

1 q2 B i 2  sin ( 2 $ ~ ~  aB2+ 2 $ ~ ~ )5 
8 

The following time-dependent partial derivatives with respect to the orbital elements a, e,  
and q0 a r e  computed only if the differential correction is carried through terms of second order: 

+ (All cos v' + 2 A 1 ,  cos 2v') (2+ 2)+ sin 2v' ­>A1 2 

aa 
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t 43,)
t - q sin ( 4 $ ~ ~  

+ (All  C O S  V' t 2A1, c o s  2v') r2+ a,,x) t sin 2v' a 4-2 


a e  
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-=av, (1 - eZ) s i n  E ( s i n  v)-' (1 - e cos E)-' aa
a a  


av aE
2=[(I - e,) s i n  E - + s i n 2  E1 ( s i n  v)-' (1 - e C O S  E)-' - (2t 

ae a e  


av2 aE aMs avo 

-= (1 - e,) s i n  E ( s i n  v)-I (1 - e cos E)-2 - -

a% arl, 


aA2 avl 
+ (- 2a1)-*/, (a: - ai)1'2 7;lB;' (A2l C O S  V' + 2 A,, C O S  2 ~ ' )  

- ($1 v1 s i n  v' + 4A,, v1 s i n  2v' - 3 A Z 3  cos 3v' - 4 A,, cos  4v') 

+ VI cos VI -aA2 1 + 2Vl cos 2v' >A2-2 + s i n  3v' aA2-3 + s i n  4v' 51aa aa  a a  aa 
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3-= {#, - 41 
q2 Bi l  cos (2+, + 2$0) + -8' q2 s i n  (24 ,  t 2 4 )  

aq0 

- (A2l v1 s i n  v' t 4 A,, v1 s i n  2v' - 3 A,, C O S  3v' - 4 C O S  4 ~ ' )  (2t?) 

aA21 aA23 aA24+ v1 cos  v' -+ 2v1 cos  2v' a 4 2-t s i n  3v' - + s i n  4v' -1 
370 aq0 a77, aq0 

This completes the computation of the partial derivatives of the uniformizing variables E , v  , 
and $ with respect to the orbital elements a ,  e ,  and qo when the calculation i s  followed through 
terms of the second order. If, however, second-order precision i s  not necessary, we can 



eliminate the terms with the subscript "2" (thus omitting all partial derivatives of 
and 4),and the above partial derivatives of the uniformizing variables reduce to: 

We now continue with the necessary equations preparatory to the partial derivatives of the 
orthogonal coordinates x Y and z . 
ax a+- = (1 - T i )  s i n  + ( s i n  x)-1 (1 - s i n *  +)-3/2 ­
aa aa ' 
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t A,, s i n  3v + A , ~s i n  4v) - c2a3 (-2al)- l /2  [(A, + A,, cos v + 2A,, C O S  2v 
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a?7, 
-- 

aE 
= qo (1 - e cos  E) + a e q O  s i n  $J s i n  E - , 

a a  aa 

ae 

aE 
- a ( 1 - e c o s  E) (s i n  + + q, cos  + - + a e To s i n  + s i n  E - . 

a+ ) 
DIFFERENTIAL CORRECTION: TIME-VARY ING PARTIAL DERIVATIVES 

WITH RESPECT TO ANGLE-EPOCH VARIABLES 
We now compute partial derivatives of the time-dependent parameters from the orbit 

generator with respect to the orbital elements p, , p2,and P 3 .  This procedure is analogous to 
Whenever a partial derivative with respect to p3 isthe one followed in the preceding section. 

not given, it is assumed to be zero. 

aMS = - 27rvl C ~ T ~B, B;' ,0 U-'2 

ap2 

-= 27rv 2 2
a*, 

c~-~A; ' (a  +b, +A,) , 
ap2 
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4 

-- 

-avl (1 - e,)  s i n  (& + E l ) ( s i n  v")-' [ l  - e cos (E  t El)]-,a 4  

t -1 q2 B;' C O S  (2$Jst 2$'0) (2.2). 

The following time-dependent partial derivatives with respect to the orbital elements p, , 
,&,and p3 are computed only if the differential correction i s  carried through terms of second 
order: 

av,aMz- - (a t b,)-I (.ap,t (All cos  v' t 2A12 C O S  2v')
a 4  

1 
t - 9 2  c o s  (4$Jst 4$J0)16 

54 



-- - - aM2 ( a  t b1)-l + (All  cos  v' + 2 A,, cos  2v' )
a4 

-M, [1 - e' C O S  (& +E1)]- '  e' s i n  (& +E1)(:+$) ' 

aM2-= [ l  - e '  c o s  (& t E,)]-' ­
ap2 ap2 

- M , [ l - e ' c o s ( &  e '  s i n ( &  +E,)  

av  aE a M S  avo
A=(1 - e*)  s i n  E ( s i n  v)-' (1 - e C O S  E)-' 
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- (Azl v1 s i n  v' + 4 A,, v1 s i n  2v' - 3 4, cos 3v' - 4 AZ4 cos 4v ' )  

3 q z  cos (2$Js t 2$b0) + -3 q2 cos  (4+, + 430)3 ($+$)}' 

- ( A z l  s i n  V' t 4A2 ,  v1 s i n  2v' - 3 A,, COS 3v' - 4 A,, cos 4 v ' )  r$+ $)] 

3 
4 
3 

4 2  cos (2+, t 2$J0) +-16 42 cos  (4*, t 

a$J - __ +-
w0 w1 a+, .t- t­

a/, w2 a 4  ap, ap2 

This completes the computation of the partial derivatives of the uniformizing variables 
E ,  v ,  and 3 with respect to the orbital elements p, ,p, , and p, (those with respect to p, are all 
zero) when the calculation is followed through terms of second order. If, however, second-
order precision is not necessary, we can eliminate the terms with the subscript "2" (thus 
omitting all partial derivatives of M, , E, , vz , and +, ), and the above partial derivatives of the 
uniformizing variables reduce to: 
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wJs 2% a+1-a+ = _. f -+ -.?a2 a@, ab2 3 4  

We now continue with the necessary equations preparatory to the partial derivatives of 
the orthogonal coordinates X, Y, and Z. 
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- ~ ~ ~ ~ ( - 2 a ~ ) - ~ ' '  cos v t 2A32 cos  2v(A, + 

av 
t 3A3, COS 3~ t 4%4 COS 4 ~ )- ,

ap2 

ax - - y  , 
a,% 

>Ep a e s i n E  ­
a 4  

a y - x ,  
ap3 

-_  a$az - a q,[(I - e cos E) c o s  + - t e s i n  $ s i n  E - ,
a 4  a 4  a 4aE 1 
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a - 0 .
a4 

THE EQUATIONS OF CONDITION 

Now that we have found ax/aq,, ay /aq i  ,and az/aqi for the Izsak orbital elements qi (i = 1, 
2, . . . ,6), we can complete the differential correction process by determining the equations of 
condition. First we expand and substitute into the matrix relation given in ANALYTICAL PRO­
CEDURE OF DIFFERENTIAL CORRECTION. The matrix relation, when expanded explicitly, 
yields the following eighteen equations: 

2% ax az-= - s i n  +x s i n  8 aa t C O S  +x s i n  0D x
ay t c o s e  - ,

aa aa 

a3 az= s i n  +x c o s  e ax cos +x cos  e + s i n e  - ,  
aa aa D a a  aa 

-= - s i n  +x s i n  e -+ aYax cos s i n  e -+ c o s  e az 
ae ae ae D a e ’  

ax ay-= s i n  +x c o s  8 -- cos +x cos 6 - + s i n  e az 
ae ae D ae  D a e  ’ 

ax, ax ay-= cos $Jx - + s i n  +x -, 
aq0 870 aT0 

azax + c o s + ; ,  s i n e  - e - ,_-- - s i n  +x s i n  eDa-rl, ay 
270 aTo 377, 

ax ay az -= s i n  C O S  e - - C O S  $x C O S  e -+ s i n  e 
3% 

27, 370 D a 7 ) o ’  
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-- 

az -= - sin GX sin 8 ax + cos +;, sin B ay + c o s  e ­
ab, n a p ,  D q ap, ' 

8% ax az-= s i n  C O S  e -- c o s  +;, c o s  8 +sin e ­
ap, ap, ap, ap, ' 

ax ayas - c o s + x  - +sin+;, - , 
ap, ap2 ap2 

ay, az 
-= - sin +;, sin 0 

D 
ax 

q 
+ c o s  +x sin e ay + c o s  e"ap,'ap2 n a p ,  

-= sin +x cos B ax c o s  $bX c o s  e + sin az 
ap2 w2 D q D a p ,  ' 

2% ax ay-= c o s  - + s i n + x  - , 
ap3 ap3 ap3 

aYM ax ay- =  - sin +x sin B - t c o s  sin e __ 
ap3 ap3 w3 ' 

5 = sin +x c o s  e" q -c o s + x  cos  e - .
ab3 

ax 	 ay
ap3 

The last two equations have only two terms on the right-hand side because of the fact that 
&yap3 = 0. We can now write out explicitly the twelve coefficients to be inserted into the equa­
tions of condition: 

aLc aLc ax, aLc aY, aLc a% 
- - - - + - - + - ­-
aa a% aa ay, aa 3% a a  ' 

aLc aLc ax,  a~~ ay,_ --- + - - t--
aLc az, 

1 ae - ax, ae  a, a e  az,ae 
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Finally, the two equations of condition corresponding to each observation are given ex­
plicitly by: 

FITTING BY METHOD OF LEAST SQUARES 

We have accumulated a set of 2n linear simultaneous equations in s ix  "unknowns," as 
follows: 

where q j  ( j  = 1, 2, . . . , 6) = a ,  e ,  r), ,PI. ,p2  ,p,. We regard the A q j  as "unknowns," and the 
number,n, of observations in the set  is fured in advance (see above under THE STANDARD DEVIA­
TION OF FIT). The above equations, written in matrix form, become 
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where the matrices of partial derivatives have n rows and six columns, the matrices of un­
knowns have six rows and one column, and the matrices of observational residuals have n 
rows and one column. Recall that, in the general case, the observed direction cosines (Lo)i 
and have associated weighting factors (w,)~ and (w,) i ,  respectively (see above under 
COMPUTATION OF DIRECTION COSINES). 

For purposes of this section, it is unnecessary to distinguish between direction cosines 
L and M o r  between weighting factors wL and w, . Further, it is not significant, for the present 
purpose, that the constant coefficients in the linear simultaneous equations have the form of 
partial derivatives. In order to simplify the notation in what follows, we combine the two 
matrix equations, each coefficient matrix having n rows, into a single matrix equation where 
the coefficient matrix has m = 2n rows. Then the matrix of constant te rms  (Le., observational 
residuals) also has m rows. We rewrite the above two equations in the simple general form 

A X = B ,  

where A = [ai ,1 has m rows and six columns and represents the coefficient matrix of partial 
derivatives, x = [xj1 has six rows and one column and represents the matrix of unknowns, and 
B = [bi] has m rows and one column and represents the matrix of observational residuals. 

The number, m, of equations we obtain by expanding the matrix relation is generally much 
greater than the number (six)of unknowns, and since the observations contain inherent random 
and possibly systematic e r rors ,  no exact solution of the simultaneous set exists. According to 
the principle of least squares, the values of the unknowns x which are preferred are those 
which cause the sum of the squares of the residuals after the f i t  to be a minimum. The so-
called "residuals after the fit" are calculated by substituting the approximate solution for the 
xj  in the matrix x, and subtracting the matrix A X  from B . When the equations of condition 
have different weights, the least-squares solution is that which minimizes the sum of the 
weighted squares of the residuals after the fit, where each square is multiplied by its corre­
sponding weight. 

The least-squares criterion is satisfied by reducing the m equations of condition to six 
equations known as normal equations. Thisprocedure, in which we adopt the usual notation for 
matrix elements (the first subscript denoting the row number and the second subscript the 
column number), is performed as follows. The first normal equation is obtained by multiplying 
the first conditional equation by w1 alt,the second by w2 a Z l ,  the third by w3 a31, etc., and sum­
ming the resulting m equations. The second normal equation is obtained by multiplying the 
first conditional equation by w1 a 1 2 ,  the second by w2 a Z 2 ,  the third by w3 a32, etc., and summing 
the resulting m equations. If we repeat this process six times, we obtain the six normal equa­
tions. It is seen that this process is equivalent to premultiplying the matrix equation A X  = B 
by the weighted transpose of the matrix A ,  where the rows of the transpose are multiplied by 
the corresponding weighting factors. The set of normal equations can be represented by the 
new matrix relation CX = D ,  where 

m 
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and 
m 

di  = a k i  b, w, (i = 1 , 2 ; * - , 6 )  . 
k = l  


Of course, if the weighting factors are not present, i.e., wk = 1 for all k, the elements c i j  
are precisely those of ATA and the elements di are precisely those of A ~ B .  Here the super­
script  "T" indicates the transposed matrix. 

We now have a system of six equations in six unknowns, since C is a square (and sym­
metric) matrix. In order to solve this system, we use a method known variously as the Gaus­
sian elimination method or  the method of pivotal condensation. This has the effect of reducing 
the square matrix to an upper triangular matrix (i.e., all elements below the principal diagonal 
are zero) which represents the same solution for the x . 

To begin this process, we choose the element of the first column of matrix C greatest in 
absolute value, say c k l  . We then divide all the elements of the k t h  row (the "pivotal row") by 
the so-called dominant element (or "pivot"), c k l .  This done, we exchange the corresponding 
elements of the pivotal row with those of the first row. The leading element of the matrix, c I 1 ,  
is now unity. We now replace all the elements in each row beginning with the second row by 
the following procedure: multiply all elements in the first  (pivotal) row by the element in the 
first column of each row successively and subtract this product from the corresponding ele­
ment of the successive rows. Mathematically, this is indicated by 

c.. = c . .- c .I 1  
c l j  ( i = 2 , 3 ; . * , 6 ;  j = 1 , 2 ; . ' , 6 ) .

1 1  1 1  

Since cll=1, it is obvious from this equation that c i l= 0 for all i = 2, 3, . . . , 6. That is, all 
elements in the first column except fo r  the first (diagonal) element are replaced by zeros. 
Essentially, we have added suitable multiples of the pivotal row to all the other rows so that in 
each resulting row the element in the first column vanishes. 

Consider the matrix with five rows and five columns obtained by deleting the first (pivotal) 
row and the first column. Now select as a new pivotal element the largest element in absolute 
value in the new first  column of the five-by-five matrix and repeat the entire process with re­
spect to the square matrix of order five. 

Continuing in this manner, we have finally a single nonzero (diagonal) element in  the last 
row. The procedure is completed by dividing this final row by the diagonal element. The result 
is an  upper triangular matrix with ones along the principal diagonal. Note that all operations 
described above to be performed on the original square matrix c are elementary row operations 
(i.e., an operation belonging to one of the three following types: the interchange of any two rows; 
the multiplication of a row by any nonzero constant; the addition of any multiple of one row to 
any other row). Thus, the triangularization process does not change the solution to the simul­
taneous set  of linear equations as long as the operations performed on matrix C a r e  performed 
in an analogous manner on the elements of the column matrix D .  This can most readily be done 
by augmenting the six-by-six matrix C by a seventh column composed of the elements of D . In 
practice, the six-by-six matrix C is further augmented by a six-by-six identity matrix placed 
in columns eight through thirteen. The purpose of this is to determine ultimately the inverse of 
the coefficient matrix C, from which we may easily find the standard e r r o r s  of the least-squares 
solution for the A q j .  Note that the various columns of C- '  can be found in succession by solving 
the matrix equationCX = I i  for the column matrix X ,where I i  represents the i t h  column ( i  = 1, 
2, . . . ,6) of the identity matrix of order six. We can thus view the  six columns of the identity 
matrix placed in the augmented six-by-thirteen matrix as constant right-hand side column 
matrices replacing B in successive least-squares solutions of the matrix equation. These suc­
cessive solutions are determined simultaneously in the Gaussian elimination method simply by 
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forming the augmented matrix E and performing the elementary row operations on all thirteen 
columns. The augmented matrix E appears as follows, after the normal equations are deter­
mined, but before the elementary row operations are begun: 

r‘11 ‘12 ‘13 ‘14 ‘15 ‘16 d l l O O O O O 
1
I ‘21 ‘22 ‘23 ‘24 ‘25 ‘26 d2 ’ I
I ‘31 ‘32 ‘33 ‘34 ‘35 ‘36 d3 1 

E =  I ‘41 ‘ 4 2  ‘43 ‘44 ‘45 ‘46 d4 ’ 
’ 1‘51 ‘52 ‘53 ‘54 ‘55 ‘56 d5 I 

1‘61 ‘62 ‘63 ‘64 ‘ 6 5  ‘66 d6 ’1 
After the triangularization process, the augmented matrix E is transformed to a matrix 

(call i t F )  of the form: 

The first  six columns of F represent the triangularized coefficient matrix and the re­
maining seven columns represent successive constant right-hand side matrices, each of which 
is associated with a particular column solution matrix. At this point, it is only natural that we 
augment the column solution matrixx (corresponding to the seventh column of F only) to a 
six-by-seven solution matrix Y, which contains X as i ts  f irst  column. The remaining columns 
of Y will contain the inverse of the coefficient matrix C of the normal equations. 

We can now write explicitly the set  of linear simultaneous equations in the triangularized 
form. 

y3i + f34 Y4i + f3, YSi t f3, y,; = g3i , 
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In the above, the subscript "it' assumes values from one to seven, corresponding to various so­
lutions for the seven right-hand side sets of constants. 

The construction of this triangular system of equations is known as the forward solution 
and the process of obtaining its solution is called back-substitution. The last equation in the 
triangular system gives the value for yfii directly. If we insert its value in the previous equa­
tion, we can obtain ygi  , and so on for the remainder of the unknowns. Mathematically, the re­
lation is 

and 
J I  J Iy . .  = g . .  - 2 fjk y k i  ' 

k = j  + 1  

where j = 5, 4, 3, 2, 1 (in that order) and i = 1, 2, . . . ,7 (in any order). 

We have now completed the determination of the oq = y j  by the least-squares principle. 
Theoretically, this procedure may always be followed to a successful conclusion provided that 
the m original equations of condition are independent; that is, provided that the determinant of 
the coefficient matrix C does not vanish. 

The formal solution by the method of least squares is now concluded, but ordinarily a 
measure of the "goodness" of the least-squares fit is desirable. The residuals after the fit 
are assembled in the so-called residual matrix U, equal to B - A X .  In terms of elements, 

u.1 = b. - f : l J l1 a.. x .  ( i  = 1 , 2 ; . - , m ) .  

j = 1  

From this, it is obvious that the sum of the squares (unweighted) of the residuals after the f i t  
is given by 

m 


We can now easily find the so-called variance-covariance matrix of the fit from the in­
verse  C-' of the coefficient matrix in the normal equations. Recall that C-' occupies columns 
two through seven of matrix Y. The variance-covariance matrix is obtained simply by multi­
plying each element in c-' by the sum of the squares of the residuals after the fit and dividing 
this product by m-6 (the excess of simultaneous equations of condition over the number of in­
dependent unknowns). If we represent the variance-covariance matrix by V ,  then we have 

where 

By comparison with computations performed above in THE STANDARD DEVIATION O F  FIT, 
we can see that the quantity pLf is a standard deviation of fit.  More precisely, pLfis the 
standard deviation of the residuals after the f i t ,  or the standard deviation of the least squares 
fit. It is not to be confused with 
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in the earlier notation, which is the standard deviation of the observational residuals, or the 
standard deviation of the observational fit. 

Finally, we can find the so-called standard errors ,  p., of the six unknowns, A q j  = y  j l .  

These are simply equal to the square roots of the diagonal eiements in the variance-covariance 
matrix, or 

where yj , is the t e rm on the principal diagonal of the inverse of the matrix C ,corre­
sponding to the unknown x = yj  ,. 

ITERATIVE LEAST-SQUARES PROCEDURE 

The procedure for producing a mean set  of orbital elements is essentially an iterated 
least-squares fitting of the first-order Taylor differential expansion of the conditional equa­
tions to numerous observational values. Using the values for the A q  . determined by the method 
of least squares, as described in the preceding section, we can calcuiate the corrected Izsak 
orbital elements. 

a '  = a  + A q ,  = a  + A a  , 

e' = e  t A q ,  = e  t A e  , 

At this point, it is useful to check that the improved or corrected elements are physically mean­
ingful. For instance, it should be ascertained that the semi-major axis a '  > 1earth radius, that 
the eccentricity e' 2 0, that the sine of the inclination, .I;, is not greater than unity in absolute 
value, and so on. 

It is now necessary to update the other parameters used in the differential correction 
process, based upon the improved orbital elements. Accordingly, the various parameters in­
cluded under PRIME CONSTANTS II are re-evaluated using the improved set of elements. This 
done, the various parameters included under MUTUAL CONSTANTS are similarly re-evaluated. 
Now, assuming that the times of the various observations in the data deck are availably as 
needed, the Orbit Generator may be used to produce the required calculated values of the 
position and velocity components. From these components, we calculate the local coordinates 
of the satellite and then the computed values of the direction cosines (refer to COMPUTA­
TION OF DIRECTION COSINES). Finally, the observational residuals are calculated. Thus, 
there are associated with each observation time in the data deck the following corresponding 
principal time-dependent quantities: 

(a) position and velocity components X ,  Y ,Z, X ,P , ; 
(b) local coordinates of the satellite x,,~, ,z, ; 
(c) computed values of the direction cosines Lc ,Mc ;and 
(d) observational residuals AL,AM . 
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Next, the statistical analysis is repeated (refer to THE STANDARD DEVIATION OF 
FIT) wherein the following quantities are determined: the average observational residual, 
the standard deviation of the observational residuals from their mean value, the standard 
deviation of (the observational) fit,  the upper and lower range limits for the observational 
residuals, and the standard deviation of f i t  of the accepted observational residuals. Once these 
quantities a r e  found, the differential correction may be repeated. Of course, the time-inde­
pendent partial derivatives are computed once only, while the time-varying partial derivatives, 
both with respect to the energy-momenta variables and to the angle-epoch variables, are com­
puted for  each observation time in the data deck. A new set of equations of condition can then 
be assembled and the fitting by least squares repeated. 

In summary, the following sequence of steps represents the iterative least- squares pro­
cedure in producing a mean set  of orbital elements for a given time span represented by a set 
of observation points: 

1. Correct the six Izsak orbital elements utilizing the values determined by the method 
of fitting the equations of condition by least squares. 

2. Update the parameters included in PRIME CONSTANTS II. 

3. Update the parameters included in MUTUAL CONSTANTS. 

4. Produce sets  of position and velocity components for each observation time using the 
Orbit Generator. 

5. Calculate the local coordinates of the satellite at  each observation time. 

6. Compute the direction cosines of the satellite at each observation time. 

7.  Determine the observational residuals for each time point. 

8. Perform a statistical analysis of the observational residuals to find various standard 
deviations and a statistically valid range within which observational residuals mil=+fall for in­
clusion in the fitting process. 

9. Begin the differential correction process by evaluating the time-independent partial 
derivatives. Then evaluate the time-varying partial derivatives for each observation point. 

10. Assemble the set of equations of condition. 

11. Fit the equations of condition by the method of least squares. First determine the six 
normal equations, then triangularize the system by the Gaussian elimination method, and finally 
use the back-substitution method to find the solution. 

12. Measure the "goodness" of the least-squares fitting by finding the residuals after the 
f i t ,  the variance-covariance matrix, and the standard e r r o r s  of the unknowns. Return to step 
number one. 

DEFINITIVE ORBITAL PARAMETERS 

The iterative least-squares procedure is generally terminated in one of two ways. Either 
the total number of iterations through the least squares routine is prescribed in advance, or the 
standard deviation of the observational fit is used as the criterion in halting the iterative method. 
If this standard deviation falls below a value prescribed in advance during a given iteration, 
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the precision of the differential correction is deemed sufficient at that point. Of course, both 
methods of terminating computation can be used concurrently; i.e., if the standard deviation 
does not meet the prescribed criterion by the p-th iteration, the differential correction 
process is halted. 

At the conclusion of the differential correction, the following definitive orbital param­
eters  may be found: 

The semi-major axis is found by multiplying a by the proper length conversion constant 
(3963.339 miles per earth radius or 6378.388 kilometers per earth radius). 

The eccentricity of the orbit is given by e. 

The inclination of the orbital plane to the equator is given by arcsin T~ (0" < 77, < 180"). 

The time of passage through the perigee point is found by multiplying -PI by the proper time 
conversion constant (13.4472 minutes per Vanguard unit of time or 806.832 seconds per Vanguard 
unit of time). The time of perigee passage is given with respect to the reference (or epoch) time 
to ,  which is that used as a basis for the observational times and that corresponding to the initial. .  
position and velocity components, X i ,  Y ,Z ,X i  ,Y , Z i .  

The argument of perigee (measured in the orbit plane from the node to the perigee point) 
is found by multiplying f12 by the angular conversion constant 57.295780 degrees per radian. 

The right ascension (measured in the equatorial plane from the vernal equinox) of the 
ascending node is  found by multiplying 8 ,  by the angular conversion constant. (Note that these 
last two parameters a r e  angles usually given as greater than or equal to 0" and less than 360", 
so that some multiple of 360" may have to be added or subtracted to bring the values into this 
principal range.) 

The height of the perigee point above the earth's surface is found by multiplying a(1-e) - 1 
by one of the length conversion constants given above. 

The height of the apogee point above the earth's surface is found by multiplying a ( l + e )-1 
by m e  of the length conversion constants. 

The anomalistic mean motion is found by multiplying a - 3  by the angular conversion 
constant and dividing by one of the time conversion constants (this gives the mean motion in  
degrees per minute o r  degrees per second). 

The anomalistic period is found by multiplying 2 r a 3  * by one of the time conversion 
constants. 

The mean anomaly (at the time of perigee passage) is found by multiplying - P l  bY 
the angular conversion constant. This expression assumes that the reference (epoch) time to 
is zero; in general, the mean anomaly is fomd by m ~ l t i p l y i n g - a - ~ , ' ~( D l  + t o )  by the angular 
conversion constant. 

RESULTS OF PRELIMINARY APPLICATIONS 

Both the orbit generator portion and the differential correction process by least-squares 
fitting have been tested independently by application to actual satellite orbits. Primarily, use 
has been made of two relatively close-in yet drag-free satellite orbits, so that neither atmos­
pheric drag nor luni-solar perturbing forces would exert major disturbing influences. The 
ANNA 1B satellite (international designation 1962 BM 1; NASA identification number 56017) 
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was launched in October 1962 under the project direction of the U. S. Navy from the Atlantic 
Missile Range into a near-circular orbit of medium inclination. Its purpose was predominantly 
that of geodetic investigation. The Relay 2 satellite (international designation 1964 3A; NASA 
identification number 64031) was launched in January 1964 under the project direction of the 
National Aeronautics and Space Administration from the renamed Eastern Test Range into a 
relatively high-eccentricity orbit. I ts  function was that of active-repeater communications 
satellite. Initial orbital parameters for 00th these satellites are given in Table 1. The obser­
vational data for the Rslay 2 satellite consist of direction-cosine pairs  reported from fifteen 
tracking stations in the Minitrack network operated by NASA, while the data for ANNA 
1B consist of right ascensions and declinations reported from twelve stations in the optical 
camera network operated by the Smithsonian Astrophysical Observatory. It might be noted that 
no weighting factors were associated with any of the sets of observational data for either the 
Relay 2 or the ANNA 1B satellite in the applications described in this section. 

Table 1 
Initial Orbital Parameters  for Satellites Used 

in Preliminary Applications. 

Orbital Parameter 

Perigee (statute miles) 

Apogee (statute miles) 
Period (minutes) 

Inclination to earth 's  
Equator (degrees) 

Semi-major axis (units of 
Earth 's  equatorial radius) 

Eccentricity 
Sine of the inclination 

ANNA 1B Relay 2 

670 1298 

728 4606 

107.8 194.7 

50.1 46.0 

1.1764 1.7448 

0.00622 0.23918 

0.7672 0.7193 

In order to gauge the intrinsic accuracy of the orbit generator, a double-precision ninth-
order Cowell numerical integration program was utilized. T w o  numerically integrated com­
parison ephemerides were produced, one using recently determined geodetic values for 
the zonal harmonic coefficients in the expansion of t h e  geopotential and the other, the 
corresponding values for  these coefficients based upon the Vinti potential (Table 2). The 

Table 2 
Zonal Harmonic Coefficients in the Geopotential 

Function Used in Generation of Numerically 
Integrated Comparison Ephemerides. 

I Coefficient I Geodetic Value I Vinti Potential Value*

i J 2  j 1.0823x10-3 j 1.0823X10-3 
-2.3 x ~ O - ~  0 

J3 


J, - 1 . 8 X  10- -1.2x10-6 


J, (n > 5) < 1x10-6 i1x10-8 
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numerically integrated ephemeris produced by 
Wd 	 the geodetic d u e s  of the zonal harmonic coef­

ficients was used as a basis for comparison 
with both the numerically integrated ephemeris 
produced by Vinti values of the zonal harmonic 
coefficients and the ephemeris produced by the 

a s  orbit generator based upon the Vinti potential
3 5  function. Figure l(a)illustrates the residuals 
0 - of the X-coordinate between (1)the Vinti ephem-
Iner eris and the numerically integrated ephemeris 

-30c produced by geodetic values, and (2) the numeri-
I I I I cally integrated ephemeris using the Vinti values 

I I 

30 - ---- VlNTl EPHEMERIS 
-NUMERICALLY INTEGRATED 

M - 	 EPHEMERIS USING VlNTl 
COEFFICIENTS 

-, l o  

-,20 

-30-

I 
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TIME (minutes) 

Figure 1 -Coordinate residuals f o r  Vinti potential 
ephemeris and for numerically integrated ephemeris 
using zonal harmonic coefficients of the Vinti potential 
each compared with numerically integrated ephemeris 
produced by geodetic values. 

and the numerically integrated ephemeris produced 
by geodetic d u e s .  Figures l(b) and l (c)  do like­
wise for the residuals of the Y-coordinate and 
Z-coordinate, respectively. 

The comparisons illustrated in Figure 1 
a r e  based on the implicit assumption that the 
initial position and velocity conditions do not 
contain any inaccuracies. In actual practice, 
such inaccuracies a r e  always present, and they 
must be removed by utilizing observational data 
in the differential correction. Figure 2 illustrates 
the determination of a mean set  of Izsak orbital 
elements by an iterated least-squares fitting of 
the differential solution to observational data for 
the ANNA 1B satellite. In all cases, the total 
number of iterations through the least squares 
fitting routine is prescribed in advance to be 
ten. This number is sufficient to attain conver­
gence within a very small tolerance. In the 
graph of each of the six orbital elements, three 
"curves" (actually a sequence of connected line 
segments) a r e  shown, corresponding to various 
numbers of observations included in the fitting. 
An equation of condition results, of course, from 
a "semi-observation": either a single right 
ascension or  a single declination value. One 
curve represents the minimum number of 
equations of condition for a true least-squares 
fitting, viz., seven. This is associated with an 
observational arc length of approximately 45 
hours. A second curve represents twenty equa­
tions of condition, o r  an addition of eleven equa­
tions, extending the observational a r c  length to 
approximately 15 hours. The third curverepre­
sents fifty equations of condition, o r  a further 

addition of thirty equations, extending the observational a r c  length to a total of approximately 98 
hours. The starting point of each of the three a r c s  is the same, so that they overlap in time. Notice 
that each observational a r c  produces a somewhat different set  of mean orbital elements, depending 
upon the additional observational values introduced. Physically, this may be explained as the re­
sultant effect of forces not accounted for in the analytical theory. For example, electromagnetic 
disturbances, solar radiation pressures, aerodynamic drag, meteoric bombardment, etc., all influ­
ence the mean se t  of orbital elements to the extent that they a r e  reflected in the observational values. 
In performing the iterated least-square fittings, all the residuals corresponding to the preselected 
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Figure 2-Convergence of a mean set of lzsak orbital elements in ten iterated least-squares fittings of the differen­
tial solution to observational da ta  for the A N N A  1 B satellite, for various numbers of equations of condition. 

observation times were accepted at each fitting. That is, the acceptable range of values for the 
residuals constituted infinitely wide bands on either side of the mean value of the residuals. 
Mathematically, using symbols introduced in THE STANDARD DEVIATION OF FIT, 

[r l ,  r21 = 1 im [E- j u,ii + j u]. 
j -m 

Figure 3 illustrates the determination of a mean set  of Izsak orbital elements by an i ter­
ated least-squares fitting of the differential solution to observational data for the Relay 2 satel­
lite. In this case, however, the observational a rc  length and the total number of observations 
a r e  held fixed, while the acceptability criterion for the observational residuals is varied. The 
a r c  length in all cases is one week, representing a total of eighty observations or a maximum 
of 160 possible conditional equations. In each of the six graphs, one curve corresponds to a 
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Figure 3-Convergence of a mean set of lzsak orbital elements in ten iterated least-squares fittings of the differen­
tial solution to observational data for the Relay 2 satellite, for various observational residual acceptability half-
width criteria. 
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"three-sigma" criterion, i.e., 

where, of course, u is the standard deviation of the observational residuals from their mean 
value. A second curve corresponds to a two-sigma criterion, and the third curve to a one-
sigma criterion. Each curve is terminated when convergence of the orbital element is attained. 
Notice that convergence appears to be a slower process with a one-sigma criterion than with 
either a two-sigma or a three-sigma criterion. The rate of convergence in these latter two 
cases seems generally about the same. One effect of a wider acceptance range appears to be 
greater fluctuations in the value of an orbital element early in the iterated fitting procedure, 
although this is not always true. Also, despite the fact that differing numbers of conditional 
equations are accepted in the fittings depending upon the criterion for the residuals, the values 
of the orbital elements at convergence are remarkably similar. Refer to Table 3 for precise 
values, including the required number of iterations to attain convergence in each case. The 
uncertainties in the final significant figures (stated as +X) are estimates based upon slight 
fluctuations in the values of the orbital elements in least-square fittings after convergence is 
attained. 

Table 3 
Values at Convergence of Izsak Orbital Elements �or Varying 

Observational Residual Acceptability Half- Widths. 
. 

Orbital Elements* One-Sigma Two -Sigma Three-Sigma 

Semi-major axis, a 1.7444277 
t 1 (12) 

1.7444278
0 

(7)
* 

I :.7444278 
0 (7) 

~-__ 

Eccentricity, e 0.2391624 
f 4 (21) 

0.2391728 
f 3 

0.2 391818 
2 (7) 

Criterion Criterion Criterion 
I 

-

Sine of inclination, T,, *
0.7231110 

2 
(21) 0.72 31020 0.7231015

2 (9)* 4 
~ 

Time of perigee passage, fil 0.099885 
6 (22) 

0.099 985 0.0999 42
* * 7 __  

Argument of perigee, 13, 3.222265 
5 

(21) 3.222232 3.222278
* * 

Right ascension of * ascending node, 5, 
-2.380274

3 (22) 
-2.38 0244- 4 (8) 

(8) 
_ _  

*Units of a l l  elements are canonical (a in earth equatorial radii; P I  in Vanguard units of time; ,d2 and ,'i3in radians). 
The integers in parentheses refer to the number of iterations required to attain the converged value given. 

Table 4 presents the same information relative to the orbital elements as Table 3, but 
for an acceptance criterion fixed at two sigma, with the maximum possible number of condi­
tional equations varied. The observational arc length remains one week, but the 160 maximum 
possible number of conditional equations are first reduced to one hundred, and then this num­
ber is in turn reduced to forty. An attempt was made to maintain an even distribution of the 
observations throughout the seven-day period, while still  operating on the "subset principle" 
(i.e., the set of twenty observations is a subset of the set of fifty observations, which is in turn 
a subset of the original set of eighty observations). 

Table 5 again records the same information relating to the orbital elements, but this time 
the parameter involving the order of precision in the differential correction is varied. Here the 

73 



Table 4 
Values at Convergence of Izsak Orbital Elements for Varying 

Numbers of Observational Points, 

Orbital Elements* 40 Conditional 100 Conditional 160 Conditional7Equations Equations Equations 

1.7444279 1.7444278
Semi-major axis, a * 0 (10) f 0 (7) 

0.2391425
5 (11) 

0.2391736 0.2391728
3 (7)Eccentricity, e 

f f 2 
(9) 

f 

Sine of inclination, T~ 
0.7231 009 0.723 097

3
5 

(10) 
, 0.7231020

4 (7)f 3 (12) f f 

0.0999 85Time of perigee passage, p, 0.1001 16 0.100002 
7 (11) f 7 (91f 9 (12) f 

3.222097 3.222261 3.222232Argument of perigee, p, 
f 5 (11) f 6 (9) f 5 (9) 

Right ascension of -2.380249 
(12) 

-2.38 0248 
(10) 

-2.380244 
4 (8)ascending node, p, f 3 * 3 f 

*Units of a l l  e lements  a re  canonical  (a in ear th  equator ia l  radii; p, in Vanguard uni ts  of time; p2 and p, in radians) .  
The  integers  in  pa ren theses  refer to the  number of i terat ions required t o  a t t a in  the converged value given. 

Table 5 
Values at Convergence of Izsak Orbital Elements for Varying 

Orders of Precision in Differential Correction. 

I
I 

Orbital Elements* Firs t  Order Second Order 

1.7444276
Semi-major axis, a f 0 (10) 

0.239 1427 0.2391425
Eccentricity, e It 8 (11) f 5 (11) 

0.7231 010 0.7231009Sine of inclination, vo f 3 (12) f 3 (12) 

0.100115 0.100116Time of perigee passage, p, f 8 (12) f 9 (12) 
I 

3.222098 3.2 22097Argument of perigee, p, 
f 6 (11) f 5 (11) 

Right ascension of -2.380250 
(12) 

-2.38 0249 
ascending node, p, f 4 f 3 

*Units of all elements  a re  canon ica l  (a  in ear th  equator ia l  radii; p, in Vanguard uni ts  of time; ,8, 
and p in radians) .  The  integers  in parentheses  refer to the number of i terat ions required to  a t ta in  
the converged m l u e  given. 
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maximum possible number of conditional equations covering the one-week observational arc is 
held constant at forty, and the acceptance criterion is fixed at two sigma. The inexact designa­
tions "first order" and "second order" indicate whether o r  not t e rms  of purely second order 
are retained in the differential correction (refer to ANALYTICAL PROCEDURE OF DIFFEREN­
TIAL CORRECTION). It is seen that retaining t e rms  of purely second order adds immeasurably 
to the precision of the final converged results in all cases, and, similarly, does not affect the rate 
of least- squares convergence. 

The remainder of the figures display the convergence of perhaps the most significant 
single parameter in evaluating the efficacy of the differential correction process, viz., the 
standard deviation of f i t .  Actually, there are two standard deviations shown in each graph. 
The upper curve corresponds to a standard deviation of f i t  which includes all of the observa­
tional residuals, while the lower curve corresponds to a standard deviation of f i t  which in­
cludes only the observational residuals accepted at each fitting. Plotted on the same abscissa 
is a curve showing the number of equations of condition (or, equivalently, the number of ob­
servational residuals) accepted at each iteration of the fitting process. 

Figures 4, 5, and 6 illustrate, respectively: the standard deviations for a maximum of 40, 
100, and 160 possible conditional equations covering the same one-week observational a r c  for the 
Relay 2 satellite. Note that convergence using a two-sigma criterion for the residuals, as shown 
in Figures 4(b), 5(b), and 6(b) is much more rapid than the convergence using a one-sigma cri­
terion shown in Figures 4(a), 5(a), and 6(a). However, the convergence is not always so smoothly 
monotonic in the case of the wider acceptance range. Both these facts confirm what was said 
earlier about the convergence of the orbital elements. 

Table 6 supplies the values of the standard deviations at convergence for the various runs 
illustrated in Figures 4, 5, and 6, as well as several others not graphed. It also gives the number 
of accepted residuals at convergence and the number of iterated fittings required to achieve 
convergence in each case. 
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Figure 4-Standard deviations of the observational 
residuals and the number of equations of condition ac­
cepted at each iteration of the fitting process for a 
maximum of 40 possible conditional equations covering 
a one-week observational arc for the Relay 2 satellite. 

Figure 5-Standard deviations of the observational re­
siduals and the number of equations of condition ac­
cepted at each iteration of the fitting process for a 
maximum of 100 possible conditional equations covering 
a one-week observational arc for the Relay 2 satellite. 
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Figure 7 illustrates the standard deviations 
for a maximum of one hundred possible conditional 
equations covering an observational arc of onlym three hours for Relay 2. This is the three-hour 
period immediately following insertion of the 

- INCLUDES ALL satellite into orbit, when observations are re-
OBSERVATIONAL corded at very frequent intervals in order to
RES1DUALS insure a wealth of data for the real-time differen­

tial correction. Here, using a one-sigma criterion, 
\\riconvergence of the orbital elements occurs after 

\ 

0 5 10 

NUMBER OF ITERATIONS 	 NUMBER OF 
ITERATIONS 

( a )  (b  1 

Figure 6-Standard deviations of the observational re­
siduals and the number of equations of condition ac­
cepted at each iteration of the f i t t ing process for a 
maximum of 160 possible conditional equations covering 
a one-week observational arc for the Relay 2 satellite. 

only four (in some cases, five) iterations. The 
standard deviations of f i t  converge after three 
iterations to values of 0.425XlO-3 (all one hundred 
observational residuals) and 0.145X10 -3 (includ­
ing seventy-seven accepted observational resid­
uals). The graph shows that the standard devia­
tions remain essentially constant after the third 
iteration and this is confirmed by the insignificant 
fluctuations in the orbital elements after the third 
iteration, although a total of ten iterations through 
the least squares fitting routine was prescribed 
in advance. 

Figure 8 illustrates the standard devia­
tions for a maximum of one hundred possible 

Table 6 

Values of Standard Deviations of Fit and Number of Accepted 


Conditional Equations at  Convergence for Various Runs 

Covering a One-Week Observational Arc.  


-

Description of Run Standard Standard 

Total Deviation Deviation Accepted Percentage Iter-
Conditional Residual Order of Fit of Fit Residuals of Total ations 

Equations Criterion of D.C. (all) (accepted) 

40 10 2nd 0.432 0.157 37 92.5 26 

40 20 2nd 0.440 0.177 38 95 12 

40 25 1s t  0.438 0.175 38 95 12 

100 l o  2nd 0.373 0.160 95 95 11 

100 20 2nd 0.377 0.169 97 97 9 

160 l o  1st 0.307 0.132 141 88.1 24 

160 l o  2nd 0.307 0.132 140 87.5 22 

160 2n 2nd 0.313 0.172 157 98.1 8 

160 30 2nd 0.315 0.187 158 98.75 9 

Note: 	 A l l  standard devia t ions  of f i t  a r e  g iven  in mils (i.e.,  in  un i t s  of T h e  parenthe t ica l  word "all" s ign i f ies  tha t  
a l l  of the observa t iona l  res idua ls ,  A L  a n d  AM, were included in  determining the  s tandard  deviation of fit; "accepted"  
means that only the  observa t iona l  res idua ls  corresponding to the a c c e p t e d  condi t iona l  equations were included i n  
determining the s tandard  deviation of f i t .  
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Figure 7-Standard deviations of the ob­
servational residuals and the number of 
equations of condition accepted at each 
iteration of the f i t t ing process for a max­
imum of 100 possible conditional equations 
covering a three-hour observational arc 
for the Relay 2 satellite. 
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Figure 8-Standard deviations of the observational re­
siduals and the number of equations of condition ac­
cepted at each iteration of the f i t t ing process far a 
maximum of 100 possible conditional equations cover­
ing two distinct observational arcs for the A N N A  1 B 
satelliie. 

conditional equations for two distinct nonoverlapping
observational a r c s  for the ANNA 1B satellite. Figure 
8(a) covers an a r c  of approximately nine days and 
fifteen hours, while Figure 8(b) covers an arc of 
approximately six days and nineteen hours. Both use 
a one-sigma criterion, and convergence of the stand­
a rd  deviations occurs after five iterations in both 
cases. The values are a relatively large 38.379 
milliradians (all one hundred observational residuals)' 
and 10.919 milliradians (including eighty-eight ac­

cepted observational residuals) for Figure 8(a). For the somewhat shorter arc in Figure 8(b), 
the values are 6.684 milliradians (all one hundred observational residuals) and 0.726 milli­
radians (including ninety-five accepted observational residuals). 

The totality of data presented herein represents a small sampling of the preliminary 
applications by which the orbit generator and differential correction have been tested. Yet 
this sampling is indicative of the utility of the spheroidal method for artificial satellite orbits. 

CONCLUDING REMARKS 

The method of solution for unretarded satellite orbits discussed in this paper has been 
programmed, primarily in the FORTRAN language, for use on the IBM 7094 digital electronic 
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computer. It requires a relatively small number of computer storage locations, and the ana­
lytical nature of the entire procedure assures  a very rapid computational process. Extensive 
tests have indicated a capacity for generating coordinate and velocity points, based upon a set 
of empirically estimated initial conditions, in impressively short  intervals of computer oper­
ating time. 

Presently, work is underway on slightly modifying the accurate reference orbit to account 
for  the effects of the most important perturbations of the neglected zonal harmonics, notably 
the third and the residual fourth. The inclusion of these perturbative effects by a procedure 
described in a recent paper by Vinti* is expected to improve the accuracy of the method so as 
to provide computed values agreeing with observation over a longer interval of time. 

In the future, a method of modifying the spheroidal potential for an oblate planet in order 
to permit the exact inclusion of the effects of the third zonal harmonic in the reference orbit is 
anticipated. Preliminary investigations are also being conducted into accounting for the luni­
solar forces and aerodynamic drag. Further results will be published as they become available. 
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Appendix A 

Modifications for Use of Right Ascension-Declination Data 

Herein we present the modifications which must be introduced in order to utilize an alternate 
form of satellite tracking data known as right ascension-declination data. Such data are recorded, 
for instance, by the optical Baker-Nunn cameras of the Astrophysical Observatory of the Smithsonian 
Institution. In utilizing this data, the modifications to be described replace the material presented 
in the main body of this report under COMPUTATION OF DIRECTION COSINES. 

A set of observation data of the right ascension-declination type includes the following 
parameters for each recorded spacecraft observation: 

t' , the date and time of Observation. The remarks in the main body of th i s  report about re­
moving reference to the calendar in transforming t '  to the relative time, t , also apply here. 

k, the code number for the tracking station reporting the observation 

a,, the observed right ascension, measured in radians eastward from the vernal equinox
(0I a. < 2n).  

so, the observed declination in radians, measured as positive north of the Equator and as 
negative south of the Equator (--7~/2 5 8, 5 + n/2) 

W, and wg,the weighting factors corresponding to observations a, and So, respectively. This 
information is optional; if  not provided, then it is assumed that wa and W~ are each unity. 

The coordinate system employed for the observation data is centered at the tracking station 
on the earth's surface, and, unlike the system used for recording direction-cosine data, its three 
coordinate axes are parallel to the respective axes of the inertial system. That is, the Z-axis is 
parallel to the earth's polar axis and the X-Y plane is parallel to the equatorial plane of the earth, 
with the X-axis extending toward the vernal equinox. The Y-axis extends orthogonally to the east 
to form a right-handed system. 

The differential correction process requires the same data to be available as listed in 
the main body of this report, viz., the  earth's flattening coefficient, f , the earth's rotational 
r a t e , w  , the geodetic longitudes,h, , of the stations, the geodetic latitudes, 8, , of the stations, 
the altitudes, H , of the stations, the angular distances, A, , from the vernal equinox to the 
Greenwich meridian at midnight Greenwich mean time for each day in the observational arc, and 
the reference time, to. 

Computations follow the same scheme given in the main body of this report for the following 
parameters: the auxiliary functions, c and s ,  the geocentric latitude, 8, , the geocentric distance, 
,6, of the station, the angular distance, 8 ,between the vernal equinox and the observation meridian 
plane, and the inertial geocentric coordinates X,, Y,, Z,  of the station. However, the angle, $x , 
between the vernal equinox and the tracking station's X-coordinate axis (measured in the 
observation latitude plane) is zero, since the topocentric and inertial coordinate systems 
are parallel. No rotations a re  necessary to bring the two systems into coincidence; a single 
translation will suffice. Hence, the relations for the topocentric o r  local coordinates of the 
satellite are simply: 
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x y = x - q  ’ 
Y,=Y-Y,,  

z ,=z -2  T ’  

where X,Y, 2 are the inertial geocentric coordinates of the satellite predicted by the orbit 
generator. The above simplified relations are obtained from those of the direction-cosine­
data case by the artificial device of setting $x = 0 and OD = 7r/2 in the corresponding equa­
tions for X,, Y,, z, given in the main body of this report (refer to  the note at the end of this 
appendix.) 

The computed values of the right ascension and the declination may now be found in te rms  
of the local coordinates: 

ac = arctan (2), 
x c  = arctan 

It is important that the angles ac and SC be placed in the proper quadrant for comparison 
purposes with the angles a. and 6,. In the case of the right ascension, this is done by examin­
ing the signs of X, and Y, separately. The following list presents all possible combinations 
(note that the range for a ,  is 0 I a, < 277). 

x , > o ,  Y , > O :  0 < a c < ­77 ’ 
2 

377x, > 0, Y, < 0 :  - <  ac < 277 ’ 
2 

x, > 0, Y, = 0 : 

x , < o ,  Y , > O :  

x , < o ,  Y , < O :  

x, < 0, Y, = 0 : 

x, = 0, Y, > 0 : 

x, = 0, Y, < 0 : 

X, = 0, Y, = 0 : 

a c = o ,  

77 
- < a c < 7 7 ,
2 

377 
77 < a c < - ,

2 

a c = n  ’ 

77 ac = ­
2 ’ 

377 ac = ­
2 ’  

ac indeterminate . 
In the case of the declination, the signs of the numerator and denominator of the arctangent 
argument are examined separately. The following list presents all possible combinations (note 
that the range for 6, is - 77/2 5 6, I + ~ / 2 ) .  
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(Xi + Y y > 0, z, > 0 : 0 < sc <x,
2 

(Xi + Y y 2  > 0, z, = 0 : sc = 0 , 

Of course, the case (Xi + yi)'I2 = Z,= 0 is not physically possible. 

The observational residuals are now found. 

nu = a ,  - ac , 

A8 = 8, - S C  

Here too, care must be exercised. There is one instance where simple subtraction in finding 
the observational residual will yield a misleading result. If one of the right ascensions 
(either observed or computed) is in the first quadrant and very near zero and the other right 
ascension is in the fourth quadrant and very nearly 271, then direct subtraction will provide a n  
erroneous result near to 271, whereas the intended difference is near to zero. This situation 
can be rectified by the following logical steps: 

If I a,  - acl 5 71, then Aa = a, - ac (as above). 
If 1 a,  - > 71, then AU = sgn (a, - a=) [2n- I a ,  - acl 1 . 

use the following:Equivalently, whenever I a,  - acl > nTT) 

(1)  If a, > ac7 then na = 27I - a ,  t ac > 0. 

a,  < a = ,  then na = ac - a ,  - 271 < 0.(2) If 

The statistical analysis of the observational residuals follows the procedure given in the 
main body of this report in THE STANDARD DEVIATION O F  FIT except that the observational 
residuals a r e  given by A a i  and A s i ,  rather than by ALi and AMi. Hence, the average residual 
is given by 

The standard deviation of the residuals from their mean value is found from 

0 =/ !  2 [(nui - R) + (ASi  -E)'] 
i = l  

a3 



- -  

The standard deviation of f i t  is given by 

Modifications are now presented to supplant the material from ANALYTICAL PROCEDURE 
OF DIFFERENTIAL CORRECTION in the main body of this report. 

The first-order Taylor series expansion of the equations of condition may be written 

6 

os = c2 oqi , 
i = l  

where qi ( i  = 1, 2, , 6)  are the mean or Izsak orbital elements. Expanding the above 
partial derivatives by the chain rule yields 

aac aac ax, aaC ay, aac az, 
- t - - t - - 1

aqi  ax, aqi ay, aqi a ~ ,aqi 

From the equations for ac  and s C  in terms of the local coordinates, we find 

aa 
-2 = - YM ( X i  t Y i p  , 
3% 

a% - + x, ( X i  t Y i p  , 
8% 
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a 6 C-= - YM zU (% t Y;)-'l2 (G t Y; t z;)-' , 
3% 

Since the station coordinates xT, yT, z, are independent of orbital parameters (and merely 
geodesic functions), the following simple relations hold: 

The method for calculating the partial derivatives ax/aqi , aY/aqi, and az/aqi is identical to 
that presented in the differential correction scheme in the main body of this report. Then the 
equations of condition are formulated 'in a precisely analogous manner to that given for the 
direction-cosine data (see THE EQUATIONS O F  CONDITION), and there is little need to 
repeat the explicit form of these equations. 

NOTE: The fact that the observational coordinate system is independent of the latitude 
and longitude of the tracking station for right ascension-declination data (as is not the case for 
direction-cosine data) leads to certain possible simplifications in the determination of the 
computed coordinates of the satellite, uc and s C .  First, recall that the equations for the 
Cartesian inertial coordinates of the observation point are given by 

x, = p  ̂ cos e, cos  s , 

.. 
YT = P cos  e, sin 6 , 

where S = ( A o ) d  + w (AT)  + A,. Here the t e r m s  (Ao)d  and w ( A T )  depend upon the time of the 
observation only, while the term A, is a function of the location of the observation point. Let 
us  denote 

8' = t @(AT) . 

Then we can expand the above equations as 

= ,2 cos 8, cos AE cos 6 '  - p cos 8, sin sin 6' , 
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Y, = t C O S  9, 

= cos B, 

Z, = sin BG 

Now denote 

so that 

sin (6' + A,) 

cos & sin 6' +;cos sin cos 6' , 

. 

x, = ;cos e, cos % , 

Y, = cos BG sin % , 

Z, = ,2 sineG , 

cos 6' -sin 6' 0 

sin 6' cos 6' 0 

0 0 1 

This represents, in matrix form, the fact that the coordinates xT, Y,, z, are obtained from 
x,, yo, z, by a simple rotation about the inertial Z-axis through an angle 6 ' .  Here 6' is the 
angle between the vernal equinox and the Greenwich,meridian at observation time. The rec­
tangular coordinates X,, Yo, Z,, obtained directly from the spherical geocentric coordinates 
;, B,, A, of the station, represent the Cartesian inertial geocentric coordinates of the track­
ing station at  a time when the Greenwich meridian and the f i rs t  point of Aries (the vernal 
equinox) coincide. If the coordinates x,, Y,, z, (dependent upon the station location only) a re  
provided as input parameters rather than A,, BD, and H, then the computations leading up to 
x,, Y,, z, a r e  simplified considerably. We need not f i rs t  compute c, s, B,, t ,  and 6 .  In­
stead, find s '  from parameters relating to the time of observation, and then compute directly 

= X, cos 6' - Yo sin 6' , 

YT = X, sin S' + Y, C O S  6' , 

ZT = z, 

Note that this simplified procedure cannot be adopted efficiently with direction-cosine data 
because the rotation matrix involved in computing X,, Y,, Z, is a function of BD, the geodetic 
latitude, and I),, an angular parameter dependent upon A,, the geodetic longitude. 
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